Copied to
clipboard

?

G = C22×C3⋊D20order 480 = 25·3·5

Direct product of C22 and C3⋊D20

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×C3⋊D20, D309C23, C30.47C24, C63(C2×D20), C305(C2×D4), (C2×C6)⋊9D20, (C2×C30)⋊14D4, C156(C22×D4), C33(C22×D20), (C6×D5)⋊7C23, (C23×D5)⋊7S3, (C22×D5)⋊15D6, D107(C22×S3), (C23×D15)⋊8C2, C6.47(C23×D5), C23.71(S3×D5), (C2×Dic3)⋊24D10, C10.47(S3×C23), (C5×Dic3)⋊8C23, (C22×Dic3)⋊9D5, Dic35(C22×D5), (C2×C30).250C23, (C22×C6).102D10, (C22×C10).119D6, (C10×Dic3)⋊31C22, (C22×D15)⋊20C22, (C22×C30).88C22, C101(C2×C3⋊D4), (D5×C22×C6)⋊4C2, C51(C22×C3⋊D4), (D5×C2×C6)⋊18C22, C2.47(C22×S3×D5), (Dic3×C2×C10)⋊11C2, (C2×C10)⋊13(C3⋊D4), C22.110(C2×S3×D5), (C2×C6).256(C22×D5), (C2×C10).254(C22×S3), SmallGroup(480,1119)

Series: Derived Chief Lower central Upper central

C1C30 — C22×C3⋊D20
C1C5C15C30C6×D5C3⋊D20C2×C3⋊D20 — C22×C3⋊D20
C15C30 — C22×C3⋊D20

Subgroups: 2684 in 472 conjugacy classes, 148 normal (18 characteristic)
C1, C2, C2 [×6], C2 [×8], C3, C4 [×4], C22 [×7], C22 [×32], C5, S3 [×4], C6, C6 [×6], C6 [×4], C2×C4 [×6], D4 [×16], C23, C23 [×20], D5 [×8], C10, C10 [×6], Dic3 [×4], D6 [×16], C2×C6 [×7], C2×C6 [×16], C15, C22×C4, C2×D4 [×12], C24 [×2], C20 [×4], D10 [×4], D10 [×28], C2×C10 [×7], C2×Dic3 [×6], C3⋊D4 [×16], C22×S3 [×10], C22×C6, C22×C6 [×10], C3×D5 [×4], D15 [×4], C30, C30 [×6], C22×D4, D20 [×16], C2×C20 [×6], C22×D5 [×6], C22×D5 [×14], C22×C10, C22×Dic3, C2×C3⋊D4 [×12], S3×C23, C23×C6, C5×Dic3 [×4], C6×D5 [×4], C6×D5 [×12], D30 [×4], D30 [×12], C2×C30 [×7], C2×D20 [×12], C22×C20, C23×D5, C23×D5, C22×C3⋊D4, C3⋊D20 [×16], C10×Dic3 [×6], D5×C2×C6 [×6], D5×C2×C6 [×4], C22×D15 [×6], C22×D15 [×4], C22×C30, C22×D20, C2×C3⋊D20 [×12], Dic3×C2×C10, D5×C22×C6, C23×D15, C22×C3⋊D20

Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D5, D6 [×7], C2×D4 [×6], C24, D10 [×7], C3⋊D4 [×4], C22×S3 [×7], C22×D4, D20 [×4], C22×D5 [×7], C2×C3⋊D4 [×6], S3×C23, S3×D5, C2×D20 [×6], C23×D5, C22×C3⋊D4, C3⋊D20 [×4], C2×S3×D5 [×3], C22×D20, C2×C3⋊D20 [×6], C22×S3×D5, C22×C3⋊D20

Generators and relations
 G = < a,b,c,d,e | a2=b2=c3=d20=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=ece=c-1, ede=d-1 >

Smallest permutation representation
On 240 points
Generators in S240
(1 212)(2 213)(3 214)(4 215)(5 216)(6 217)(7 218)(8 219)(9 220)(10 201)(11 202)(12 203)(13 204)(14 205)(15 206)(16 207)(17 208)(18 209)(19 210)(20 211)(21 231)(22 232)(23 233)(24 234)(25 235)(26 236)(27 237)(28 238)(29 239)(30 240)(31 221)(32 222)(33 223)(34 224)(35 225)(36 226)(37 227)(38 228)(39 229)(40 230)(41 130)(42 131)(43 132)(44 133)(45 134)(46 135)(47 136)(48 137)(49 138)(50 139)(51 140)(52 121)(53 122)(54 123)(55 124)(56 125)(57 126)(58 127)(59 128)(60 129)(61 159)(62 160)(63 141)(64 142)(65 143)(66 144)(67 145)(68 146)(69 147)(70 148)(71 149)(72 150)(73 151)(74 152)(75 153)(76 154)(77 155)(78 156)(79 157)(80 158)(81 194)(82 195)(83 196)(84 197)(85 198)(86 199)(87 200)(88 181)(89 182)(90 183)(91 184)(92 185)(93 186)(94 187)(95 188)(96 189)(97 190)(98 191)(99 192)(100 193)(101 169)(102 170)(103 171)(104 172)(105 173)(106 174)(107 175)(108 176)(109 177)(110 178)(111 179)(112 180)(113 161)(114 162)(115 163)(116 164)(117 165)(118 166)(119 167)(120 168)
(1 125)(2 126)(3 127)(4 128)(5 129)(6 130)(7 131)(8 132)(9 133)(10 134)(11 135)(12 136)(13 137)(14 138)(15 139)(16 140)(17 121)(18 122)(19 123)(20 124)(21 74)(22 75)(23 76)(24 77)(25 78)(26 79)(27 80)(28 61)(29 62)(30 63)(31 64)(32 65)(33 66)(34 67)(35 68)(36 69)(37 70)(38 71)(39 72)(40 73)(41 217)(42 218)(43 219)(44 220)(45 201)(46 202)(47 203)(48 204)(49 205)(50 206)(51 207)(52 208)(53 209)(54 210)(55 211)(56 212)(57 213)(58 214)(59 215)(60 216)(81 118)(82 119)(83 120)(84 101)(85 102)(86 103)(87 104)(88 105)(89 106)(90 107)(91 108)(92 109)(93 110)(94 111)(95 112)(96 113)(97 114)(98 115)(99 116)(100 117)(141 240)(142 221)(143 222)(144 223)(145 224)(146 225)(147 226)(148 227)(149 228)(150 229)(151 230)(152 231)(153 232)(154 233)(155 234)(156 235)(157 236)(158 237)(159 238)(160 239)(161 189)(162 190)(163 191)(164 192)(165 193)(166 194)(167 195)(168 196)(169 197)(170 198)(171 199)(172 200)(173 181)(174 182)(175 183)(176 184)(177 185)(178 186)(179 187)(180 188)
(1 105 36)(2 37 106)(3 107 38)(4 39 108)(5 109 40)(6 21 110)(7 111 22)(8 23 112)(9 113 24)(10 25 114)(11 115 26)(12 27 116)(13 117 28)(14 29 118)(15 119 30)(16 31 120)(17 101 32)(18 33 102)(19 103 34)(20 35 104)(41 152 186)(42 187 153)(43 154 188)(44 189 155)(45 156 190)(46 191 157)(47 158 192)(48 193 159)(49 160 194)(50 195 141)(51 142 196)(52 197 143)(53 144 198)(54 199 145)(55 146 200)(56 181 147)(57 148 182)(58 183 149)(59 150 184)(60 185 151)(61 137 100)(62 81 138)(63 139 82)(64 83 140)(65 121 84)(66 85 122)(67 123 86)(68 87 124)(69 125 88)(70 89 126)(71 127 90)(72 91 128)(73 129 92)(74 93 130)(75 131 94)(76 95 132)(77 133 96)(78 97 134)(79 135 98)(80 99 136)(161 234 220)(162 201 235)(163 236 202)(164 203 237)(165 238 204)(166 205 239)(167 240 206)(168 207 221)(169 222 208)(170 209 223)(171 224 210)(172 211 225)(173 226 212)(174 213 227)(175 228 214)(176 215 229)(177 230 216)(178 217 231)(179 232 218)(180 219 233)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220)(221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 201)(2 220)(3 219)(4 218)(5 217)(6 216)(7 215)(8 214)(9 213)(10 212)(11 211)(12 210)(13 209)(14 208)(15 207)(16 206)(17 205)(18 204)(19 203)(20 202)(21 230)(22 229)(23 228)(24 227)(25 226)(26 225)(27 224)(28 223)(29 222)(30 221)(31 240)(32 239)(33 238)(34 237)(35 236)(36 235)(37 234)(38 233)(39 232)(40 231)(41 129)(42 128)(43 127)(44 126)(45 125)(46 124)(47 123)(48 122)(49 121)(50 140)(51 139)(52 138)(53 137)(54 136)(55 135)(56 134)(57 133)(58 132)(59 131)(60 130)(61 144)(62 143)(63 142)(64 141)(65 160)(66 159)(67 158)(68 157)(69 156)(70 155)(71 154)(72 153)(73 152)(74 151)(75 150)(76 149)(77 148)(78 147)(79 146)(80 145)(81 197)(82 196)(83 195)(84 194)(85 193)(86 192)(87 191)(88 190)(89 189)(90 188)(91 187)(92 186)(93 185)(94 184)(95 183)(96 182)(97 181)(98 200)(99 199)(100 198)(101 166)(102 165)(103 164)(104 163)(105 162)(106 161)(107 180)(108 179)(109 178)(110 177)(111 176)(112 175)(113 174)(114 173)(115 172)(116 171)(117 170)(118 169)(119 168)(120 167)

G:=sub<Sym(240)| (1,212)(2,213)(3,214)(4,215)(5,216)(6,217)(7,218)(8,219)(9,220)(10,201)(11,202)(12,203)(13,204)(14,205)(15,206)(16,207)(17,208)(18,209)(19,210)(20,211)(21,231)(22,232)(23,233)(24,234)(25,235)(26,236)(27,237)(28,238)(29,239)(30,240)(31,221)(32,222)(33,223)(34,224)(35,225)(36,226)(37,227)(38,228)(39,229)(40,230)(41,130)(42,131)(43,132)(44,133)(45,134)(46,135)(47,136)(48,137)(49,138)(50,139)(51,140)(52,121)(53,122)(54,123)(55,124)(56,125)(57,126)(58,127)(59,128)(60,129)(61,159)(62,160)(63,141)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,148)(71,149)(72,150)(73,151)(74,152)(75,153)(76,154)(77,155)(78,156)(79,157)(80,158)(81,194)(82,195)(83,196)(84,197)(85,198)(86,199)(87,200)(88,181)(89,182)(90,183)(91,184)(92,185)(93,186)(94,187)(95,188)(96,189)(97,190)(98,191)(99,192)(100,193)(101,169)(102,170)(103,171)(104,172)(105,173)(106,174)(107,175)(108,176)(109,177)(110,178)(111,179)(112,180)(113,161)(114,162)(115,163)(116,164)(117,165)(118,166)(119,167)(120,168), (1,125)(2,126)(3,127)(4,128)(5,129)(6,130)(7,131)(8,132)(9,133)(10,134)(11,135)(12,136)(13,137)(14,138)(15,139)(16,140)(17,121)(18,122)(19,123)(20,124)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,217)(42,218)(43,219)(44,220)(45,201)(46,202)(47,203)(48,204)(49,205)(50,206)(51,207)(52,208)(53,209)(54,210)(55,211)(56,212)(57,213)(58,214)(59,215)(60,216)(81,118)(82,119)(83,120)(84,101)(85,102)(86,103)(87,104)(88,105)(89,106)(90,107)(91,108)(92,109)(93,110)(94,111)(95,112)(96,113)(97,114)(98,115)(99,116)(100,117)(141,240)(142,221)(143,222)(144,223)(145,224)(146,225)(147,226)(148,227)(149,228)(150,229)(151,230)(152,231)(153,232)(154,233)(155,234)(156,235)(157,236)(158,237)(159,238)(160,239)(161,189)(162,190)(163,191)(164,192)(165,193)(166,194)(167,195)(168,196)(169,197)(170,198)(171,199)(172,200)(173,181)(174,182)(175,183)(176,184)(177,185)(178,186)(179,187)(180,188), (1,105,36)(2,37,106)(3,107,38)(4,39,108)(5,109,40)(6,21,110)(7,111,22)(8,23,112)(9,113,24)(10,25,114)(11,115,26)(12,27,116)(13,117,28)(14,29,118)(15,119,30)(16,31,120)(17,101,32)(18,33,102)(19,103,34)(20,35,104)(41,152,186)(42,187,153)(43,154,188)(44,189,155)(45,156,190)(46,191,157)(47,158,192)(48,193,159)(49,160,194)(50,195,141)(51,142,196)(52,197,143)(53,144,198)(54,199,145)(55,146,200)(56,181,147)(57,148,182)(58,183,149)(59,150,184)(60,185,151)(61,137,100)(62,81,138)(63,139,82)(64,83,140)(65,121,84)(66,85,122)(67,123,86)(68,87,124)(69,125,88)(70,89,126)(71,127,90)(72,91,128)(73,129,92)(74,93,130)(75,131,94)(76,95,132)(77,133,96)(78,97,134)(79,135,98)(80,99,136)(161,234,220)(162,201,235)(163,236,202)(164,203,237)(165,238,204)(166,205,239)(167,240,206)(168,207,221)(169,222,208)(170,209,223)(171,224,210)(172,211,225)(173,226,212)(174,213,227)(175,228,214)(176,215,229)(177,230,216)(178,217,231)(179,232,218)(180,219,233), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,201)(2,220)(3,219)(4,218)(5,217)(6,216)(7,215)(8,214)(9,213)(10,212)(11,211)(12,210)(13,209)(14,208)(15,207)(16,206)(17,205)(18,204)(19,203)(20,202)(21,230)(22,229)(23,228)(24,227)(25,226)(26,225)(27,224)(28,223)(29,222)(30,221)(31,240)(32,239)(33,238)(34,237)(35,236)(36,235)(37,234)(38,233)(39,232)(40,231)(41,129)(42,128)(43,127)(44,126)(45,125)(46,124)(47,123)(48,122)(49,121)(50,140)(51,139)(52,138)(53,137)(54,136)(55,135)(56,134)(57,133)(58,132)(59,131)(60,130)(61,144)(62,143)(63,142)(64,141)(65,160)(66,159)(67,158)(68,157)(69,156)(70,155)(71,154)(72,153)(73,152)(74,151)(75,150)(76,149)(77,148)(78,147)(79,146)(80,145)(81,197)(82,196)(83,195)(84,194)(85,193)(86,192)(87,191)(88,190)(89,189)(90,188)(91,187)(92,186)(93,185)(94,184)(95,183)(96,182)(97,181)(98,200)(99,199)(100,198)(101,166)(102,165)(103,164)(104,163)(105,162)(106,161)(107,180)(108,179)(109,178)(110,177)(111,176)(112,175)(113,174)(114,173)(115,172)(116,171)(117,170)(118,169)(119,168)(120,167)>;

G:=Group( (1,212)(2,213)(3,214)(4,215)(5,216)(6,217)(7,218)(8,219)(9,220)(10,201)(11,202)(12,203)(13,204)(14,205)(15,206)(16,207)(17,208)(18,209)(19,210)(20,211)(21,231)(22,232)(23,233)(24,234)(25,235)(26,236)(27,237)(28,238)(29,239)(30,240)(31,221)(32,222)(33,223)(34,224)(35,225)(36,226)(37,227)(38,228)(39,229)(40,230)(41,130)(42,131)(43,132)(44,133)(45,134)(46,135)(47,136)(48,137)(49,138)(50,139)(51,140)(52,121)(53,122)(54,123)(55,124)(56,125)(57,126)(58,127)(59,128)(60,129)(61,159)(62,160)(63,141)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,148)(71,149)(72,150)(73,151)(74,152)(75,153)(76,154)(77,155)(78,156)(79,157)(80,158)(81,194)(82,195)(83,196)(84,197)(85,198)(86,199)(87,200)(88,181)(89,182)(90,183)(91,184)(92,185)(93,186)(94,187)(95,188)(96,189)(97,190)(98,191)(99,192)(100,193)(101,169)(102,170)(103,171)(104,172)(105,173)(106,174)(107,175)(108,176)(109,177)(110,178)(111,179)(112,180)(113,161)(114,162)(115,163)(116,164)(117,165)(118,166)(119,167)(120,168), (1,125)(2,126)(3,127)(4,128)(5,129)(6,130)(7,131)(8,132)(9,133)(10,134)(11,135)(12,136)(13,137)(14,138)(15,139)(16,140)(17,121)(18,122)(19,123)(20,124)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,217)(42,218)(43,219)(44,220)(45,201)(46,202)(47,203)(48,204)(49,205)(50,206)(51,207)(52,208)(53,209)(54,210)(55,211)(56,212)(57,213)(58,214)(59,215)(60,216)(81,118)(82,119)(83,120)(84,101)(85,102)(86,103)(87,104)(88,105)(89,106)(90,107)(91,108)(92,109)(93,110)(94,111)(95,112)(96,113)(97,114)(98,115)(99,116)(100,117)(141,240)(142,221)(143,222)(144,223)(145,224)(146,225)(147,226)(148,227)(149,228)(150,229)(151,230)(152,231)(153,232)(154,233)(155,234)(156,235)(157,236)(158,237)(159,238)(160,239)(161,189)(162,190)(163,191)(164,192)(165,193)(166,194)(167,195)(168,196)(169,197)(170,198)(171,199)(172,200)(173,181)(174,182)(175,183)(176,184)(177,185)(178,186)(179,187)(180,188), (1,105,36)(2,37,106)(3,107,38)(4,39,108)(5,109,40)(6,21,110)(7,111,22)(8,23,112)(9,113,24)(10,25,114)(11,115,26)(12,27,116)(13,117,28)(14,29,118)(15,119,30)(16,31,120)(17,101,32)(18,33,102)(19,103,34)(20,35,104)(41,152,186)(42,187,153)(43,154,188)(44,189,155)(45,156,190)(46,191,157)(47,158,192)(48,193,159)(49,160,194)(50,195,141)(51,142,196)(52,197,143)(53,144,198)(54,199,145)(55,146,200)(56,181,147)(57,148,182)(58,183,149)(59,150,184)(60,185,151)(61,137,100)(62,81,138)(63,139,82)(64,83,140)(65,121,84)(66,85,122)(67,123,86)(68,87,124)(69,125,88)(70,89,126)(71,127,90)(72,91,128)(73,129,92)(74,93,130)(75,131,94)(76,95,132)(77,133,96)(78,97,134)(79,135,98)(80,99,136)(161,234,220)(162,201,235)(163,236,202)(164,203,237)(165,238,204)(166,205,239)(167,240,206)(168,207,221)(169,222,208)(170,209,223)(171,224,210)(172,211,225)(173,226,212)(174,213,227)(175,228,214)(176,215,229)(177,230,216)(178,217,231)(179,232,218)(180,219,233), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,201)(2,220)(3,219)(4,218)(5,217)(6,216)(7,215)(8,214)(9,213)(10,212)(11,211)(12,210)(13,209)(14,208)(15,207)(16,206)(17,205)(18,204)(19,203)(20,202)(21,230)(22,229)(23,228)(24,227)(25,226)(26,225)(27,224)(28,223)(29,222)(30,221)(31,240)(32,239)(33,238)(34,237)(35,236)(36,235)(37,234)(38,233)(39,232)(40,231)(41,129)(42,128)(43,127)(44,126)(45,125)(46,124)(47,123)(48,122)(49,121)(50,140)(51,139)(52,138)(53,137)(54,136)(55,135)(56,134)(57,133)(58,132)(59,131)(60,130)(61,144)(62,143)(63,142)(64,141)(65,160)(66,159)(67,158)(68,157)(69,156)(70,155)(71,154)(72,153)(73,152)(74,151)(75,150)(76,149)(77,148)(78,147)(79,146)(80,145)(81,197)(82,196)(83,195)(84,194)(85,193)(86,192)(87,191)(88,190)(89,189)(90,188)(91,187)(92,186)(93,185)(94,184)(95,183)(96,182)(97,181)(98,200)(99,199)(100,198)(101,166)(102,165)(103,164)(104,163)(105,162)(106,161)(107,180)(108,179)(109,178)(110,177)(111,176)(112,175)(113,174)(114,173)(115,172)(116,171)(117,170)(118,169)(119,168)(120,167) );

G=PermutationGroup([(1,212),(2,213),(3,214),(4,215),(5,216),(6,217),(7,218),(8,219),(9,220),(10,201),(11,202),(12,203),(13,204),(14,205),(15,206),(16,207),(17,208),(18,209),(19,210),(20,211),(21,231),(22,232),(23,233),(24,234),(25,235),(26,236),(27,237),(28,238),(29,239),(30,240),(31,221),(32,222),(33,223),(34,224),(35,225),(36,226),(37,227),(38,228),(39,229),(40,230),(41,130),(42,131),(43,132),(44,133),(45,134),(46,135),(47,136),(48,137),(49,138),(50,139),(51,140),(52,121),(53,122),(54,123),(55,124),(56,125),(57,126),(58,127),(59,128),(60,129),(61,159),(62,160),(63,141),(64,142),(65,143),(66,144),(67,145),(68,146),(69,147),(70,148),(71,149),(72,150),(73,151),(74,152),(75,153),(76,154),(77,155),(78,156),(79,157),(80,158),(81,194),(82,195),(83,196),(84,197),(85,198),(86,199),(87,200),(88,181),(89,182),(90,183),(91,184),(92,185),(93,186),(94,187),(95,188),(96,189),(97,190),(98,191),(99,192),(100,193),(101,169),(102,170),(103,171),(104,172),(105,173),(106,174),(107,175),(108,176),(109,177),(110,178),(111,179),(112,180),(113,161),(114,162),(115,163),(116,164),(117,165),(118,166),(119,167),(120,168)], [(1,125),(2,126),(3,127),(4,128),(5,129),(6,130),(7,131),(8,132),(9,133),(10,134),(11,135),(12,136),(13,137),(14,138),(15,139),(16,140),(17,121),(18,122),(19,123),(20,124),(21,74),(22,75),(23,76),(24,77),(25,78),(26,79),(27,80),(28,61),(29,62),(30,63),(31,64),(32,65),(33,66),(34,67),(35,68),(36,69),(37,70),(38,71),(39,72),(40,73),(41,217),(42,218),(43,219),(44,220),(45,201),(46,202),(47,203),(48,204),(49,205),(50,206),(51,207),(52,208),(53,209),(54,210),(55,211),(56,212),(57,213),(58,214),(59,215),(60,216),(81,118),(82,119),(83,120),(84,101),(85,102),(86,103),(87,104),(88,105),(89,106),(90,107),(91,108),(92,109),(93,110),(94,111),(95,112),(96,113),(97,114),(98,115),(99,116),(100,117),(141,240),(142,221),(143,222),(144,223),(145,224),(146,225),(147,226),(148,227),(149,228),(150,229),(151,230),(152,231),(153,232),(154,233),(155,234),(156,235),(157,236),(158,237),(159,238),(160,239),(161,189),(162,190),(163,191),(164,192),(165,193),(166,194),(167,195),(168,196),(169,197),(170,198),(171,199),(172,200),(173,181),(174,182),(175,183),(176,184),(177,185),(178,186),(179,187),(180,188)], [(1,105,36),(2,37,106),(3,107,38),(4,39,108),(5,109,40),(6,21,110),(7,111,22),(8,23,112),(9,113,24),(10,25,114),(11,115,26),(12,27,116),(13,117,28),(14,29,118),(15,119,30),(16,31,120),(17,101,32),(18,33,102),(19,103,34),(20,35,104),(41,152,186),(42,187,153),(43,154,188),(44,189,155),(45,156,190),(46,191,157),(47,158,192),(48,193,159),(49,160,194),(50,195,141),(51,142,196),(52,197,143),(53,144,198),(54,199,145),(55,146,200),(56,181,147),(57,148,182),(58,183,149),(59,150,184),(60,185,151),(61,137,100),(62,81,138),(63,139,82),(64,83,140),(65,121,84),(66,85,122),(67,123,86),(68,87,124),(69,125,88),(70,89,126),(71,127,90),(72,91,128),(73,129,92),(74,93,130),(75,131,94),(76,95,132),(77,133,96),(78,97,134),(79,135,98),(80,99,136),(161,234,220),(162,201,235),(163,236,202),(164,203,237),(165,238,204),(166,205,239),(167,240,206),(168,207,221),(169,222,208),(170,209,223),(171,224,210),(172,211,225),(173,226,212),(174,213,227),(175,228,214),(176,215,229),(177,230,216),(178,217,231),(179,232,218),(180,219,233)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220),(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,201),(2,220),(3,219),(4,218),(5,217),(6,216),(7,215),(8,214),(9,213),(10,212),(11,211),(12,210),(13,209),(14,208),(15,207),(16,206),(17,205),(18,204),(19,203),(20,202),(21,230),(22,229),(23,228),(24,227),(25,226),(26,225),(27,224),(28,223),(29,222),(30,221),(31,240),(32,239),(33,238),(34,237),(35,236),(36,235),(37,234),(38,233),(39,232),(40,231),(41,129),(42,128),(43,127),(44,126),(45,125),(46,124),(47,123),(48,122),(49,121),(50,140),(51,139),(52,138),(53,137),(54,136),(55,135),(56,134),(57,133),(58,132),(59,131),(60,130),(61,144),(62,143),(63,142),(64,141),(65,160),(66,159),(67,158),(68,157),(69,156),(70,155),(71,154),(72,153),(73,152),(74,151),(75,150),(76,149),(77,148),(78,147),(79,146),(80,145),(81,197),(82,196),(83,195),(84,194),(85,193),(86,192),(87,191),(88,190),(89,189),(90,188),(91,187),(92,186),(93,185),(94,184),(95,183),(96,182),(97,181),(98,200),(99,199),(100,198),(101,166),(102,165),(103,164),(104,163),(105,162),(106,161),(107,180),(108,179),(109,178),(110,177),(111,176),(112,175),(113,174),(114,173),(115,172),(116,171),(117,170),(118,169),(119,168),(120,167)])

Matrix representation G ⊆ GL5(𝔽61)

600000
01000
00100
000600
000060
,
10000
060000
006000
00010
00001
,
10000
01000
00100
000470
000013
,
10000
006000
011700
00001
000600
,
10000
0446000
0441700
00001
00010

G:=sub<GL(5,GF(61))| [60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,60],[1,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,47,0,0,0,0,0,13],[1,0,0,0,0,0,0,1,0,0,0,60,17,0,0,0,0,0,0,60,0,0,0,1,0],[1,0,0,0,0,0,44,44,0,0,0,60,17,0,0,0,0,0,0,1,0,0,0,1,0] >;

84 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O 3 4A4B4C4D5A5B6A···6G6H···6O10A···10N15A15B20A···20P30A···30N
order12···22222222234444556···66···610···10151520···2030···30
size11···1101010103030303026666222···210···102···2446···64···4

84 irreducible representations

dim11111222222222444
type++++++++++++++++
imageC1C2C2C2C2S3D4D5D6D6D10D10C3⋊D4D20S3×D5C3⋊D20C2×S3×D5
kernelC22×C3⋊D20C2×C3⋊D20Dic3×C2×C10D5×C22×C6C23×D15C23×D5C2×C30C22×Dic3C22×D5C22×C10C2×Dic3C22×C6C2×C10C2×C6C23C22C22
# reps11211114261122816286

In GAP, Magma, Sage, TeX

C_2^2\times C_3\rtimes D_{20}
% in TeX

G:=Group("C2^2xC3:D20");
// GroupNames label

G:=SmallGroup(480,1119);
// by ID

G=gap.SmallGroup(480,1119);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,253,120,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^20=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽